Water Lives

new scientific horizons for biodiversity and water policy

Impacts of climate change and land use on freshwater ecosystems

REFRESH partners

Piet Verdonschot

JNIVERSITY OF AMSTERDAM

Group of Aquatic Ecology and Ecotoxicology piet.verdonschot@wur.nl

Knowledge sources

Key factors

Piet Verdonschot, Alterra

Piet Verdonschot, Alterra

Hydrological cycle

Piet Verdonschot, Alterra

Hydrological cycle

Piet Verdonschot, Alterra

Reseach

Approach

Field experiments along the Atlantic climate gradient

- **Rivers Wetlands Lakes**
- temperature X X lacksquareX
- floods/droughts x water level X ullet
 - nutrients X X X

Desk research with reviews / existing data analysis Europe

- thresholds, reference conditions ightarrow
- vulnerability assessment, indicators ullet
- mitigation, adaptation, restoration

Piet Verdonschot, Alterra

 \bullet

EU science-policy meeting Brussels

Atlantic climate gradient

Major conclusions

Land use > Climate change

Temperature

- Shading improves WFD ecological status and mitigates climate and land use change by lowering temperature and increasing naturalness (1 km = -2.5°C and community recovery).
- Current nutrient measures in lakes compensate future increase by rising temperatures.

Nutrients

- Temperature increase => > eutrophication in lakes (sediment releases) and rivers.
- Eutrophication => > lake algae blooms, > fish, and masks shading in rivers.

Major conclusions

Hydrology

- River drought is fast and disastrous.
- River stagnation should be avoided to last > 1 week.
- Eutrophied rivers effects stronger due to de-oxygenation.
- Pools do not act as refugia.
- Water level fluctuations => higher temperatures.
- => extra eutrophication.
 => more ions.

Climate and land use stress

Piet Verdonschot, Alterra

Measures

Measures

www.climate-and-freshwater.info

Table 2, Climate change adaptation labels.

colour code	colour	number of climate induced pressures	explanation
	dark green	4-5 (+++)	win-win measure
	light green	2-3 (++)	win-win measure
	pale green	1 (+)	no regret measure
	yellow	0	
	red	-	regret measure

	adaptation strategies	measures
Lakes	11	40
Rivers	15	51

Piet Verdonschot, Alterra

Top-measures in freshwaters

• Vision on catchment infrastructure

Hydrology

- Store by infiltration
- Retain by inundation
- Retard by profile reduction

Morphology

- Develop wooded riparian zone
- Introduce CPOM or lake shore length
- Reduce size profile (supply sand)

buffer strips, 1000 m wooded zone ↓5°C littoral & substrate heterogeneity

Piet Verdonschot, Alterra

Top-measures in freshwaters

Chemistry

- Purify in bleu veins (chemistry)
- Separate urban flows (chemistry)

scale

filters in veins, no eutrophication O₂>6 mg/l

Biology

- Re-introduce species (biology)
- Adapt / abandon maintenance

Active re-introduction

Piet Verdonschot, Alterra

Catchment: hydrological flows

Mitigation measures

Spatial configuration

